Loading Deck

Oral Qualifying Exam

$$\newcommand{\re}{\operatorname{Re}} \newcommand{\rNL}{R_{\text{NL}}} \newcommand{\rSQ}{R_{\text{SQ}}} \newcommand{\vect}[1]{\mathbf{#1}} \newcommand{\vK}{\mathbf{k}} \newcommand{\exOfK}{\left( \vK \right)} \newcommand{\exOfMK}{\left( - \vK \right)} \newcommand{\hc}{\text{h.c.}} \newcommand{\exInteration}[2]{ {c^-_{#1}}^† \left( \vK' \right) {c^-_{#2}}^† \left( - \vK' \right) c^-_{#2} \left( - \vK \right) c^-_{#1} \left( \vK \right) } \newcommand{\exThetaMPU}[1]{\frac{θ \left( #1 \right)}{2}} \newcommand{\exExp}{e^{-i \left( ϕ_{\vK'} - ϕ_{\vK} \right)}} \newcommand{\exSin}{\sin{\exThetaMPU{k}} \sin{\exThetaMPU{k'}}} \newcommand{\exCos}{\cos{\exThetaMPU{k}} \cos{\exThetaMPU{k'}}} $$

Two dimensional systems

Spin lifetime

Outline

  1. Motivation
  2. Model and solution
  3. Hanle curve fitting
  4. Regimes and results

Motivation

  1. Theoretical lifetime predictions longer than measured values: \( \text{ms} \) vs. \( \text{ps} \)
  2. Finite contact resistance mismatch: a potential candidate
  3. Unified analytic solution for fitting data in all limits

E. Sosenko, H. Wei, and V. Aji, Phys. Rev. B 89, 245436 (2014).

Fits

Tunneling contacts

Fit to parallel field data from Fig. 4a of W. Han, et al.
  • \( L = 5.5 \: \text{µm} \)
  • \( P = 0.1 \)
  • \( R_\text{C} = 6.7 × 10^{ 6 } \: \text{kΩ} \)
  • \( τ = 451.84 \: \text{ps} \)
  • \( D = 0.01 \: \text{m}^2 \text{s}^{-1} \)

Tunneling contacts

Fit to parallel field data from Fig. 4b of W. Han, et al.
  • \( L = 2.1 \: \text{µm} \)
  • \( P = 0.19 \)
  • \( R_\text{C} = 2.03 × 10^{ 7 } \: \text{kΩ} \)
  • \( τ = 514.3 \: \text{ps} \)
  • \( D = 0.02 \: \text{m}^2 \text{s}^{-1} \)

W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami, Phys. Rev. Lett. 105, 167202 (2010).

Device geometry

  • \( L \) : contact spacing
  • \( D \) : diffusion constant
  • \( τ \) : spin lifetime
  • \( λ = \sqrt{D τ} \)
  • \( ω = g μ_B B / ħ \)
  • \( μ_s = \frac{1}{2} \left( μ_↑ - μ_↓ \right) \)
  • \( J_{↑↓} = σ_{↑↓} ∇μ_{↑↓} \)
  • \( J_{↑↓}^C = Σ_{↑↓} \left( μ^N_{↑↓} - μ^F_{↑↓} \right)_c \)
  • \( J = J_↑ + J_↓ \)
  • \( J_s = J_↑ - J_↓ \)

$$D ∇^2 μ_s - \frac{μ_s}{τ} + ω × μ_s = 0$$

$$V ∝ μ_s^N(x = L)$$

$$R_\text{NL} = V / I$$

J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Žutić, Acta Physica Slovaca 57, 565 (2007).
M. Johnson and R. H. Silsbee, Phys. Rev. B 37, 5312 (1988).
S. Takahashi and S. Maekawa, Phys. Rev. B 67, 052409 (2003).
M. Popinciuc, C. Józsa, P. J. Zomer, N. Tombros, A. Veligura, H. T. Jonkman, and B. J. van Wees, Phys. Rev. B 80, 214427 (2009).

Motivation for solution

Existing results

  • All existing analytic expressions ignore contact resistance
  • Assume infinite resistance for convenience
  • Integral form widely used but difficult to fit
  • Only a numeric treatment of finite contact resistance

$$\rNL ∝ \re{\frac{e^{- \left( L / λ \right) \sqrt{1 + i ω τ}}}{2 \sqrt{1 + i ω τ}}}$$

$$\rNL ∝ \int_0^∞ \frac{1}{\sqrt{4 π D t}} \exp{\left[ - \frac{L^2}{4 D t} \right]} e^{-t / τ} \cos{ω t} \: dt$$

Our approach

  • Finite contact resistance
  • Exact analytic expression
  • Matches previous approaches in appropriate limits

Non-local resistance

$$Δ \rNL = 2 P^2 R_N \left\lvert f \right\rvert$$

  • \( r = \frac{R_F + R_C}{\rSQ} W \)
  • \( \rSQ = W / σ^N \)
  • \( R_N = \frac{λ}{W L} \frac{1}{σ^N} \)

$$ \begin{multline} f = \re \left\{ \left( \vphantom{ \frac{ \sinh{ \left[ \left( L / λ \right) \sqrt{1 + i ω τ} \right] } }{\sqrt{1 + i ω τ}} } 2 \left[ \sqrt{1 + i ω τ} + (λ / r) \right] e^{\left( L / λ \right) \sqrt{1 + i ω τ}} \right. \right. \\ \left. \left. + (λ / r)^2 \frac{ \sinh{ \left[ \left( L / λ \right) \sqrt{1 + i ω τ} \right] } }{\sqrt{1 + i ω τ}} \right)^{-1} \right\} . \end{multline} $$

Only scales that appear in \( f \)

  • \( L / λ \)
  • \( λ / r \)
  • \( ω τ \)

E. Sosenko, H. Wei, and V. Aji, Phys. Rev. B 89, 245436 (2014).

Fits

Tunneling contacts

Fit to parallel field data from Fig. 4a of W. Han, et al.
  • \( L = 5.5 \: \text{µm} \)
  • \( P = 0.1 \)
  • \( R_\text{C} = 6.7 × 10^{ 6 } \: \text{kΩ} \)
  • \( τ = 451.84 \: \text{ps} \)
  • \( D = 0.01 \: \text{m}^2 \text{s}^{-1} \)

Tunneling contacts

Fit to parallel field data from Fig. 4b of W. Han, et al.
  • \( L = 2.1 \: \text{µm} \)
  • \( P = 0.19 \)
  • \( R_\text{C} = 2.03 × 10^{ 7 } \: \text{kΩ} \)
  • \( τ = 514.3 \: \text{ps} \)
  • \( D = 0.02 \: \text{m}^2 \text{s}^{-1} \)

W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami, Phys. Rev. Lett. 105, 167202 (2010).

Fits

Pinhole contacts

Fit to parallel field data from Fig. 4c of W. Han, et al.
  • \( L = 3.0 \: \text{µm} \)
  • \( P = 0.23 \)
  • \( R_\text{C} = 1.31 × 10^{ 7 } \: \text{kΩ} \)
  • \( τ = 132.28 \: \text{ps} \)
  • \( D = 0.02 \: \text{m}^2 \text{s}^{-1} \)

Transparent contacts

Fit to parallel field data from Fig. 4d of W. Han, et al.
  • \( L = 3.0 \: \text{µm} \)
  • \( P = 0.01 \)
  • \( R_\text{C} = 2.94 \: \text{kΩ} \)
  • \( τ = 130.36 \: \text{ps} \)
  • \( D = 0.04 \: \text{m}^2 \text{s}^{-1} \)

W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami, Phys. Rev. Lett. 105, 167202 (2010).

Regimes

Zero field

$$Δ \rNL = \left( P_Σ^L \right)^2 R_N e^{- L / λ}$$

Tunneling contacts

$$f^∞ = \re{\frac{e^{- \left( L / λ \right) \sqrt{1 + i ω τ}}}{2 \sqrt{1 + i ω τ}}}$$

Fits independent of lifetime

\( λ / r ≫ \sqrt{ω τ} ≫ 1 \)

Zeros determined by $$L \sqrt{\frac{D}{2 ω}} + \frac{π}{4} = \frac{n π}{2}$$

E. Sosenko, H. Wei, and V. Aji, Phys. Rev. B 89, 245436 (2014).

Fits: \( τ \) Independent Limit

Transparent contacts

Fit to parallel field data from Fig. 4d of W. Han, et al.
  • \( L = 3.0 \: \text{µm} \)
  • \( P = 0.02 \)
  • \( R_\text{C} = 0.27 \: \text{kΩ} \)
  • \( τ = 9.97 × 10^{ 9 } \: \text{ps} \)
  • \( D = 0.02 \: \text{m}^2 \text{s}^{-1} \)

Transparent contacts

Fit to parallel field data from Fig. 4d of W. Han, et al.
  • \( L = 3.0 \: \text{µm} \)
  • \( P = 0.02 \)
  • \( R_\text{C} = 0.28 \: \text{kΩ} \)
  • \( τ = 9.95 × 10^{ 13 } \: \text{ps} \)
  • \( D = 0.02 \: \text{m}^2 \text{s}^{-1} \)

W. Han, K. Pi, K. M. McCreary, Y. Li, J. J. I. Wong, A. G. Swartz, and R. K. Kawakami, Phys. Rev. Lett. 105, 167202 (2010).

Dichalcogenides

Motivation

  1. Active and emerging field
  2. Monolayer graphene-like system with new valley physics
  3. Potentially a natural spin valve material

Effective Hamiltonian

  • \( \mathrm{MoS_2} \), \( \mathrm{WS_2} \), \( \mathrm{MoSe_2} \), \( \mathrm{WSe_2} \)
  • Similar to monolayer graphene: two inequivalent valleys: \( \vect{K} \), \( \vect{K}' \)
  • Strong spin-orbit coupling and inversion symmetry breaking
  • Leads to opposite valley Berry curvature
  • Two state tight binding model: \( d_{z^2} \), and \( d_{xy} \), \( d_{x^2 - y^2} \)

$$ H_0^{τ σ} \exOfK = a t \left(τ k_x σ_x + k_y σ_y \right) ⊗ I_2 + \frac{Δ}{2} σ_z ⊗ I_2 - λ τ \left(σ_z - 1 \right) ⊗ S_z $$

$$ H_0^{τ σ} \exOfK = \left[ \begin{matrix} \dfrac{Δ}{2} & a t \left( τ k_x - i k_y \right) \\ a t \left( τ k_x + i k_y \right) & λ τ σ - \dfrac{Δ}{2} \end{matrix} \right] $$

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).

Energy Bands

The eight energy bands for \( \mathrm{MoS_2} \).

$$ E_{τ σ}^n \exOfK = \frac{1}{2} \left( λ τ σ + n \sqrt{ (2 a t)^2 \left\lvert \vect{k} \right\rvert^2 + \left( Δ - λ τ σ \right)^2 } \right) $$

Optical Transitions

Optical transition rates for \( H_0 \).
Optical transitions strongly coupled to light polarization.

\( \vect{P}^{τ σ} \exOfK = \frac{m_0}{ħ} \left\langle u_+ \right\rvert ∇_{\vK} H_0^{τ σ} \exOfK \left\lvert u_- \right\rangle \)

\( P_±^{τ σ} \exOfK = P_x^{τ σ} ± i P_y^{τ σ} \)

  • Right circular polarization strongly couples to \( τ = + \) valley transitions
  • Left circular polarization strongly couples to \( τ = - \) valley transitions

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).

Vally Hall effect

Valley hall effect for electrons.
Optical transitions strongly coupled to light polarization.

Semiclassical equations

\( \dot{\vect{r}} = ∇_{\vK} E \exOfK - \dot{\vect{k}} × \vect{Ω} \exOfK \)

\( \dot{\vect{k}} = - e \vect{E} - e \dot{\vect{r}} × \vect{B} \)

Anomalous velocity \( \vect{v} = e \vect{Ω} \exOfK × \vect{E} \)

Berry curvature

\( \vect{Ω}_{τ σ}^n \exOfK = ∇_{\vK} × \left\langle u_{τ σ}^n \exOfK \right\rvert i ∇_{\vK} \left\lvert u_{τ σ}^n \exOfK \right\rangle \)

Broken inversion symmetry

\( \vect{Ω}_{τ, σ}^n \exOfK = - \vect{Ω}_{-τ, σ}^n \exOfK ≠ 0 \)

BCS Superconductivity

Mean-field Hamiltonian

$$ H - μ N = \sideset{}{}∑_{\vK σ} ξ_{\vK} c_{\vK σ}^† c_{\vK σ} - \sideset{}{}∑_{\vK} \left( \bar{Δ}_{\vK} c_{-\vK ↓} c_{\vK ↑} + Δ_{\vK} c_{\vK ↑}^† c_{-\vK ↓}^† \right) $$

Region of allowed parings for fixed center-of-mass momentum.

Number of available parings maximized when center-of-mass momentum is zero

Quasiparticle operators

\( b_{\vK σ} = σ \cos{θ_{\vK}} c_{\vK σ} + \sin{θ_{\vK}} c_{-\vK, -σ}^† \)

Diagonalized

\( \sideset{}{}∑_{\vK σ} λ_{\vK} b_{\vK σ}^† b_{\vK σ} \)

Induced Superconductivity

Intervalley pairing

BCS pairs for induced superconducting states.
  • \( a^ν_{τ σ} \)—orbital operators
  • \( b_α \)—quasiparticle operators
  • BCS pairs in opposite valleys
  • Reduces to standard BCS Hamiltonian where \( α = τ = σ \) plays the role of the spin index
  • Not a singlet ground state: mixture of singlet and triplet states

$$ \begin{equation} H_V = - \sideset{}{'}∑_{\vK} \sideset{}{}∑_{ν, τ} Δ_ν {a^ν_{-τ ↓}}^† \exOfMK {a^ν_{τ ↑}}^† \exOfK + \hc \end{equation} $$

$$ \begin{equation} H - μ N = \sideset{}{'}∑_{\vK} \sideset{}{}∑_α λ_{\vK}^α b_{\vK α}^† b_{\vK α} + \sideset{}{'}∑_{\vK} \left(ξ_{\vK ↓} + λ_{\vK}^- \right) . \end{equation} $$

Optical Transitions

Optical transition rates for \( H_0 \).
Optical transitions strongly coupled to light polarization.

\( \vect{P}^{τ σ} \exOfK = \frac{m_0}{ħ} \left\langle u_+ \right\rvert ∇_{\vK} H_0^{τ σ} \exOfK \left\lvert u_- \right\rangle \)

\( P_±^{τ σ} \exOfK = P_x^{τ σ} ± i P_y^{τ σ} \)

  • Right circular polarization strongly couples to \( τ = + \) valley transitions
  • Left circular polarization strongly couples to \( τ = - \) valley transitions

D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).

SC Optical Excitations

Induced superconducting optical transition rates for \( τ = + \).
Induced superconducting optical transition rates for \( τ = - \).

\( \vect{P} \exOfK = \frac{m_0}{ħ} \left\langle Ω_f \right\rvert ∇_{\vK} H^{τ σ} \exOfK \left\lvert Ω \right\rangle \)

\( P_± \exOfK = P_x ± i P_y \)

\( \left\lvert Ω \right\rangle = ∏_{\vK} b_{\vK ↑} b_{-\vK ↓} \left\lvert 0 \right\rangle \)

\( \left\lvert Ω_f \right\rangle = \begin{cases} {c^+_α}^† \exOfK b_{-α} \exOfMK \left\lvert Ω \right\rangle & k > k_μ \\ {c^+_α}^† \exOfK b_{-α}^† \exOfMK \left\lvert Ω \right\rangle & k < k_μ \end{cases} \)

SC Optical Excitations

Compare to normal transitions

Strong induced superconducting optical transition rates. Dashed lines are \( H_0 \) transitions.
Weak induced superconducting optical transition rates. Dashed lines are \( H_0 \) transitions.
  • Upper band excitations are now paired with lower band quasiparticle excitations
  • Valley-polarization coupling is retained even in the superconducting case
  • Contrast is reduced in an region around the chemical potential

Future Work

Induced superconductivity

  • Only looked at \( \mathrm{MoS_2} \)
  • Can tune the parameters to understand how they affect the physics
  • Look at other properties of this state, e.g., magnetic susceptibility

Intrinsic superconductivity

  • Derived from density-density interactions
  • Already have the projected interaction term
  • Apply mean-field and an analogous analysis
  • Both intervalley and intravalley pairing

$$ \begin{align} A \left( \vK, \vK' \right) = & B^2 \left( \vK, \vK' \right) \exInteration{+ ↑}{+ ↑} \\ + & B^2 \left( \vK', \vK\right) \exInteration{- ↓}{- ↓} \\ + & \left\lvert B \left( \vK, \vK' \right) \right\rvert^2 \left[ \exInteration{+ ↑}{- ↓} \\ + \exInteration{- ↓}{+ ↑} \right] \end{align} $$